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Atomic displacements in Cu metal due to substitutional transition metal impurities are
investigated using the discrete lattice model and the Kanzaki lattice static method. The
effective ion-ion interaction potential, due to Wills and Harrison, is used to evaluate the
dynamical matrix and the impurity-induced forces. The results for atomic displacements due
to 3d, 4d and 5d impurities (Co, Ni, Pd, Ag, Pt and Au) in Cu are given up to 20 nearest
impurity neighbors, and these are compared with the available experimental data; they are
found to agree. The lattice shows expansion due to Co, Pd, Ag, Pt and Au impurities and
contraction due to Ni impurities. The maximum displacement, 2.3% of 1NN distance, was
found for the CuAu alloy, while the minimum displacements, 0.43% of 1NN distance was
found for the CuNi alloy. The relaxation energies for the Ni and Pd impurities were found
to be less than that of the other types of impurities, therefore these impurities may easily be
solvable in Cu.

PACS. 61.72.-y – Defects and impurities in crystals; microstructure.
PACS. 61.72.Ji – Point defects (vacancies, interstitials, color centers, etc.) and defect clusters.

I. Introduction

The transition metal (TM) based alloys are technologically important. The properties of
these alloys are largely influenced by their structure and the electronic nature of the host and
impurity atoms. A large number of experimental techniques have been used to study the properties
of these alloys. With the advance of synchrotron radiation, absorption spectroscopy has emerged
as an additional tool for the study of the TM based alloys. Recent X-ray absorption fine structure
(XAFS) date [1] for the transition metal based dilute alloys are of immense importance, due to
a growing interest in the experimental study of these alloys. Along with the advancements in
experimental techniques, the need has surfaced to study the dynamical behavior of these alloys
theoretically. This would help in understanding the formation of the transition metal alloys. We
used the Kanzaki lattice static method [2] to investigate the strain field due to transition metal
impurities in the bcc transition metals Vanadium, Chromium, and Iron [3-5] and the fcc transition
metals Nickel and Palladium [6]. The effective ion-ion interaction potential, due to Wills and
Harrison [7], was used to calculate the Kanzaki forces. The calculated atomic displacements of
the NN’s (nearest neighbors) impurities in V, Fe, Ni, and Pd hosts exhibited the same trend as
predicted by X-ray diffraction studies for the fractional change in the lattice parameters. Since
the atomic displacement data calculated in the discrete lattice model are of vital importance to the
study of the elastic and electronic properties of dilute alloys [8-11], a report of the calculations
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for the strain field due to transition metal impurities in fcc Cu using discrete lattice model should
be of interest. The plan of the paper is as follows: The necessary formalism is given in Sec. II.
The calculations and results are presented in Sec. III and are discussed in Sec. IV.

II. Formalism

For a perfect crystal with a self consistent pair potential Á(r), the total interaction energy
©0 is given as

©0 =
X

n

Á( ~R0
n) (1)

where ~R0
n is the equilibrium position of the nth host atom. If an impurity is introduced at

the origin, the lattice becomes strained, and the host atoms move to new equilibrium positions
~Rn = ~R0

n + ~u(~R
0
n), where ~u( ~R0

n) are the atomic displacements. Kanzaki assumed that these
atomic displacements are produced by an appropriate distribution of external forces in the crystal
which depend upon the nature of the impurity. The potential energy of the strained lattice under
applied external forces is expanded in a powers series of the displacements, which in the harmonic
approximation is given as
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where ©0 is the potential energy of a perfect lattice, the force components
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n) = ¡ @©
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Here ®; ¯ (x; y; z) denote the Cartesian components. F®(~R
0
n) is the ® component of the external

force applied on the atom R0
n and Á®¯(n; n

0) are the force constants which obey the crystal
symmetries. The equilibrium values of u(R0

n) are obtained by minimizing © with respect to
u®(R

0
n), i.e.

@©

@u®(R0
n)
= 0: (5)

Substituting Eq. (2) into (5), one finds

F®( ~R
0
n) =

X
n0; ¯

Á®¯(n; n
0)u¯( ~R

0
n0): (6)

Evidently the displacements can be evaluated if F®( ~R0
n) and Á®¯(n; n

0) are known.
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In the Kanzaki lattice static method the displacements are expanded in normal co-ordinates
as

u®(~R
0
n) =

X
~q

Q®(~q) exp({~q: ~R
0
n); (7)

where ~q is a wave vector and the expansion coefficients ~Q(~q) are normal co-ordinates. Since we
are considering a periodic superlattice of defects, the wave vectors ~q must satisfy periodic boundary
conditions, and all such physically distinct ~q vectors will be contained within the first Brillouin
zone. ~Q(~q) are, in general, complex and, to ensure the reality condition for displacements

~Q(¡~q) = ~Q¤(~q); (8)

where the asterisk stands for the complex conjugate. Using Eq. (7) in Eq. (2), one gets the Fourier
transform of the total energy © of the strained lattice:
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X
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and
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N is the number of unit cells in the crystal. F®(~q) and Á®¯(~q) are the Fourier transforms of
F®(~R

0
n) and Á®¯(n¡ n0), respectively. The equilibrium condition in Fourier space becomes

@©

@Q®(q)
= 0; (12)

which in conjunction with Eq. (9) givesX
¯

£
NÁ®¯(¡~q)Q¯(~q)¡ F¯(~q)±®¯±¡~q;~q

¤
= 0: (13)

Equation (13) gives three simultaneous equations for three components Q¯(~q) for each value of
~q. If Á®¯(~q) and F¯(~q) are known, Eq. (13) can be solved for ~Q(~q) which, in turn, gives u®(~R

0
n)

from Eq. (7).
For a central ion-ion potential, the dynamical matrix is written as
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where

An =
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In the metallic crystal, the ions are screened by the conduction electrons, thereby more quuickly
decreasing the ionic potential, which exhibits oscillatory behavior at large distances. It has been
found that in the d-band metals the screening is large [8-10], therefore the major contribution to
Á®¯(~q) and F®(~q) in these metals is expected to arises from the first few NN’s. Including the
interactions up to 1NN’s, Á®¯(~q) for the fcc structure, from Eqs. (11) and (14), becomes
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where ® 6= ¯ 6= ° and a is the lattice parameter. Similarly, Eq. (10) at the 1NN shell of impurity
gives
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where FI is the force acting on the 1NN impurity sites. Considering the interaction with the 2NN
shell, the components of F (~q) are

F®(~q) = i2FII sin(q®a); (19)

where FII is the force at the 2NN impurity site.
With the knowledge of Á®¯(q) and F®(q), one can solve Eq. (13) for ~Q(~q) using the

properties of determinants. For the radial forces at the 1NNs imports shell only (usually called
the FI system),
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G22 and G33 are obtained from the expression for G11 by the cyclic permutation of x; y; z. Q2(q)
and Q3(q) can be obtained from Q1(q) using cubic symmetry. For the radial forces acting only
on the 2NN impurity shell (called the FII system),

{Q1 =
FII

NA1

¯̄̄̄
¯̄ sin 2x G2 G3

sin 2y G22 G4

sin 2z G4 G33

¯̄̄̄
¯̄ : (27)

Q2(q) and Q3(q) can be obtained from Q1(q) using cubic symmetry.

II-1. Calculation of FI and FII

The external force ~F (R0
n) for substitutional impurities in the fcc host is calculated consid-

ering the four configurations, as shown in Fig. 1. The difference in the potential energies of the
(a) and (d) configurations is

©(d)¡ ©(a)= [©(d)¡ ©(c)] + [©(c)¡ ©(b)] + [©(b)¡ ©(a)]
=
X

n
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+
1

2

X
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nj)];

(28)

where ÁHH(r) and ÁIH(r) are the host-host and impurity-host interaction potentials respectively.
Comparing Eqs. (2) and (28), we see that the second term of both expressions is the same; therefore
by equating the first term of Eqs. (2) and (28), one gets
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FIG. 1. The four lattice configurations for a substitutional impurity. (a) Perfect host lattice, (b) strained
lattice due to an external force, (c) strained lattice with one atom removed, and (d) an impurity
atom placed at the vacant lattice site.

Equation (31) can be solved with the two approximations. If u(R0
n) is very small, the second term

in Eq. (31) can be neglected. The first approximation is where the force constants of the host
metal remain unchanged in the presence of an impurity. If u(R0

n) is significant, both terms in
Eq. (31) are retained. This is called the second approximation, and takes care of impurity-induced
changes in the force constants of the lattice. To include the interactions up to 2NN’s, the atomic
displacements due to FI and FII are combined to evaluate ~u(~R0

n) in the second approximation,
as was done by Kanzaki.

The conduction electrons in the transition metal have both an s and a quasilocalised d
character, and these characteristic should be included in the calculation of the ion-ion interaction
potential. In the formation of TM, the d states are broadened into quasilocalised bands with a
finite bandwidth. Furthermore the d bands become distorted due to the crystal potential and there
is s-d hybridization. These effects are included in the Wills and Harrison transition metal model
potential [3] which is

ÁHH(r) = Á
FE
HH(r) + Á

c
HH(r) + Á

b
HH(r); (32)

where
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Here ÁF E
HH(r) is the free electron contribution, Ác

HH(r) arises from the shift in the d band center
due to the s-d hybridization and Áb

HH arises from the finite d-bandwidth. ZsH and ZdH are the
number of s and d conduction electrons per host atom, ∙ is the Thomas Fermi screening constant,
rcH is the Ashcroft model-potential core radius and rdH is the d state radii. n is the number of
1NNs in the host lattice and m is the mass of the electron.

Equations (32)-(35) are generalized to produce the interatomic potential for the impurity
-host interaction in the dilute alloys, which is [3]
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c
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Here ZsI and Zeff
d are the number of s conduction electrons and the effective quasilocalized d-

electron per impurity atom. In Eq. (38) rdI is the d-state radius, rcI is the Ashcroft model-potential
core radius for the impurity and ∙0 is the Thomas Fermi screening length for the host-impurity
interaction. It is difficult to know the variation in the number of d electrons in the d-band
introduced by the introduction of an impurity. Therefore we take the effective number of d
electrons, Zeff

d , in an alloy as the weighted average of the number of d electrons in the host and
impurity atoms, i.e.

Zeff
d = CHZdH + CIZdI ; (40)

where ZdI is the number of quasilocalized d electrons per impurity atom and CH and CI are the
concentrations of host and impurity atoms respectively.

In the alloying process, there may be a further transfer of electrons to or from the s and d
bands, as a result of which the conduction electron charge would redistribute around any impurity
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to screen or unscreen it. However we assume that these charge transfers are small, so we can
write the excess interatomic potential due to the impurity as

¢Á(r) = ¢ÁFE(r) + ¢Ác(r) + ¢Áb(r); (41)

where
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In Eqs. (41) to (44), ¢ÁF E(r), ¢Ác(r) and ¢Áb(r) are impurity induced changes in the potential
due to the free electrons, s-d hybridization and d-band width contributions, respectively.

III. Calculations and results

The above formalism is used to calculate the atomic displacements in Cu dilute alloys due
to 3d (Co and Ni), 4d (Pd and Ag) and 5d (Pt and Au) transition metal impurities. The physical
parameters and a few of the calculated results are given in Tables I and II. The host potential
ÁHH(r) and the impurity host potential ÁIH(r) are used to calculate the excess potential ¢Á(r)
using Eq. (41).

The change in potential ¢Á(r) due to impurities in Cu metal depends upon the impurity
induced s-d hybridization and a shift in the d band center which depends on the difference between
the Ashcroft core radius and the d-state radius of the impurity and the host. In the dilute alloys
of Cu, ¢Á(r) for the 3d impurities is smaller by an order of magnitude than for the 4d and 5d
impurities. ¢Á(r) is repulsive at small distances but becomes attractive at large distances for all
the impurities.

TABLE I. The physical parameters (in a.u.) of Cu metal. a is the lattice parameter, ­0 is the
atomic volume, Z is number of s and d conduction electrons per atom and A1, B1

are the force constants as defined in Eq. 15.

Host a ­0 Z A1 (10¡2) B1 (10¡2)

Cu 6.82 76 11 1.5669 -0.3474
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TABLE II. rc and rd are the Ashcroft core radius and d state radius respectively, FI and FII

(in a.u.) are impurity-induced forces evaluated at 1NN’s and 2NN’s in the second
approximation, and Er is the relaxation energy.

Cu
Imp.

rc (a.u.) rd (a.u.) FI (10¡3) FII (10¡3) Er (¡10¡3 eV)

Co 1.55 1.70 3.52 0.21 1.94

Ni 1.00 1.34 1.47 0.08 0.35

Cu 0.87 1.27

Pd 0.98 1.77 5.83 0.18 0.52

Ag 0.85 1.68 6.10 0.31 5.83

Pt 0.62 1.97 6.67 0.11 7.03

Au 0.76 1.91 7.78 0.36 9.49

The calculated ¢Á(r) is used in Eq. (31) to calculate FI and FII at the 1NN and 2NN
impurity in the second approximation. The FI and FII values which are sensitive to the slope
of ¢Á(r) are given in Table II. In the Cu host, the forces are repulsive at 1NN’s and 2NN’s for
Co, Pd, Ag, Pt and Au impurities. For an Ni impurity the forces are attractive at the 1NN’s and
repulsive at the 2NN’s.

These values of FI and FII , and the calculated values of the force constants A1 and B1,
are used to calculate Á®®(~q), and hence ~Q(~q), with the help of Eqs. (20-27). The inverse Fourier
transform of ~Q(~q), as given in Eq. (7) gives ~u( ~R0

n). The numerical calculations are simplified by
replacing the sum over ~q by the integration over the cube of edge 4¼=a, which inscribes the first
Brillouin zone, and using the fact that for any function F (q),Z

BZ

F (q)dq =
1

2

Z
cube

F (q)dq; (45)

for the fcc structure. The integration is carried out by a Gaussian quadrature method. The
calculated values of atomic displacements are tabulated in Tables III to V for Cu(Co, Ni, Pd,
Ag, Pt and Au) dilute alloys, respectively. These displacements are oscillatory in nature and are
significant even up to twenty nearest neighbors of impurity which are tabulated here.

In the CuCo dilute alloy the 1NN’s are displaced away from the impurity, one the 2NN’s
are displaced towards impurity atom, and the third and fourth NN’s are displaced away from the
impurity, which are followed by an oscillatory nature of displacements. The maximum ju(r)j due
to Co is found at the 1NN’s site. For the Co impurity, the number of atoms displaced away from
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TABLE III. Atomic displacements (in a.u.) of the NN’s for Co and Ni impurities in Cu. The
coordinates (n1; n2; n3) of the NN’s are in units of (a/2) and (ux; uy; uz) are the
cartesian components of the atomic displacements here and also in the subsequent
tables.

Co Ni
NN’s

(n1; n2; n3) ux uy uz ux uy uz

110 0.0353 0.0353 0.0000 -0.0150 -0.0150 0.0000

200 -0.0078 0.0000 0.0000 0.0080 0.0000 0.0000

211 0.0106 0.0118 0.0118 -0.0043 -0.0051 -0.0051

220 0.0164 0.0164 0.0000 -0.0070 -0.0070 0.0000

310 -0.0067 0.0016 0.0000 0.0038 0.0002 0.0000

222 0.0109 0.0109 0.0109 -0.0047 -0.0047 -0.0047

321 0.0063 0.0078 0.0048 -0.0026 -0.0032 -0.0019

400 -0.0075 0.0000 0.0000 0.0029 0.0000 0.0000

411 -0.0052 -0.0004 -0.0004 0.0025 0.0005 0.0005

330 0.0090 0.0090 0.0000 -0.0039 -0.0039 0.0000

420 -0.0027 0.0010 0.0000 0.0015 0.0000 0.0000

332 0.0076 0.0076 0.0060 -0.0032 -0.0032 -0.0024

422 0.0030 0.0034 0.0034 -0.0011 -0.0012 -0.0012

431 0.0041 0.0050 0.0018 -0.0017 -0.0020 -0.0007

510 -0.0044 -0.0009 0.0000 0.0016 0.0004 0.0000

521 -0.0032 -0.0006 -0.0005 0.0015 0.0004 0.0003

440 0.0056 0.0056 0.0000 -0.0024 -0.0024 0.0000

433 0.0054 0.0049 0.0049 -0.0022 -0.0020 -0.0020

530 -0.0008 0.0009 0.0000 0.0005 -0.0002 0.0000

442 0.0051 0.0051 0.0028 -0.0021 -0.0021 -0.0011
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TABLE IV. Atomic displacements (in a.u.) of the NN’s of Pd and Ag impurities in Cu.

Pd Ag
NN’s

(n1; n2; n3) ux uy uz ux uy uz

110 0.0588 0.0588 0.0000 0.0613 0.0613 0.0000

200 -0.0177 0.0000 0.0000 -0.0152 0.0000 0.0000

211 0.0174 0.0198 0.0198 0.0183 0.0205 0.0205

220 0.0273 0.0273 0.0000 0.0284 0.0284 0.0000

310 -0.0121 0.0017 0.0000 -0.0119 0.0024 0.0000

222 0.0182 0.0182 0.0182 0.0190 0.0190 0.0190

321 0.0103 0.0128 0.0078 0.0108 0.0134 0.0083

400 -0.0122 0.0000 0.0000 -0.0129 0.0000 0.0000

411 -0.0090 -0.0010 -0.0010 -0.0092 -0.0008 -0.0008

330 0.0150 0.0150 0.0000 0.0156 0.0156 0.0000

420 -0.0049 0.0012 0.0000 -0.0049 0.0015 0.0000

332 0.0127 0.0127 0.0098 0.0132 0.0132 0.0103

422 0.0049 0.0054 0.0054 0.0052 0.0058 0.0058

431 0.0068 0.0083 0.0029 0.0071 0.0087 0.0031

510 -0.0070 -0.0016 0.0000 -0.0075 -0.0016 0.0000

521 -0.0054 -0.0011 -0.0009 -0.0055 -0.0010 -0.0008

440 0.0094 0.0094 0.0000 0.0098 0.0098 0.0000

433 0.0089 0.0080 0.0080 0.0094 0.0084 0.0084

530 -0.0015 0.0013 0.0000 -0.0014 0.0015 0.0000

442 0.0084 0.0084 0.0045 0.0088 0.0088 0.0048
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TABLE V. Atomic displacements (in a.u.) of the NN’s for Pt and Au impurities in Cu.

Pt Au
NN’s

(n1; n2; n3) ux uy uz ux uy uz

110 0.0674 0.0674 0.0000 0.0782 0.0782 0.0000

200 -0.0229 0.0000 0.0000 -0.0202 0.0000 0.0000

211 0.0198 0.0227 0.0227 0.0233 0.0262 0.0262

220 0.0313 0.0313 0.0000 0.0363 0.0363 0.0000

310 -0.0144 0.0015 0.0000 -0.0154 0.0029 0.0000

222 0.0210 0.0210 0.0210 0.0242 0.0242 0.0242

321 0.0118 0.0145 0.0089 0.0138 0.0171 0.0105

400 -0.0138 0.0000 0.0000 -0.0164 0.0000 0.0000

411 -0.0105 -0.0013 -0.0013 -0.0118 -0.0011 -0.0011

330 0.0172 0.0172 0.0000 0.0199 0.0199 0.0000

420 -0.0058 0.0011 0.0000 -0.0063 0.0019 0.0000

332 0.0145 0.0145 0.0112 0.0169 0.0169 0.0132

422 0.0055 0.0061 0.0061 0.0066 0.0073 0.0073

431 0.0078 0.0094 0.0033 0.0091 0.0111 0.0040

510 -0.0079 -0.0019 0.0000 -0.0095 -0.0021 0.0000

521 -0.0062 -0.0014 -0.0011 -0.0071 -0.0014 -0.0011

440 0.0108 0.0108 0.0000 0.0124 0.0124 0.0000

433 0.0102 0.0091 0.0091 0.0120 0.0107 0.0107

530 -0.0018 0.0014 0.0000 -0.0019 0.0019 0.0000

442 0.0096 0.0096 0.0051 0.0112 0.0112 0.0061
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FIG. 2. The atomic displacements of the 5NN’s for the Co, Ni, Pd, Ag, pt, and Au impurities in Cu host.
The solid joining lines are for visual guidance.

the impurity are larger than those that move towards the impurity atom. In CuNi the (310), (321)
and (411) NN’s show both the anisotropic displacements and atomic displacements due to the Ni
impurity. For the Ni impurity the displacements of NN’s which move towards the impurity are
larger then those which move away from the impurity, therefore the lattice contracts. The The
displacements due to Pd, and Ag impurities are isotropic as well as anisotropic. The ju(r)j is
maximum at 1NN’s and the behavior of NN’s is similar to that of the Co impurity. The behavior
of the Pt and the Au impurities is similar to that of the Pd and Ag impurities. The maximum
displacement occurs at the 1NN and is directes away from the impurity.

The magnitude of atomic displacements for Cu alloys up to 5NN’s are shown in Fig. 2.
The strain field decreases with the increase in the d-electrons for 3d impurities, i.e. from Co to
Ni. For 4d impurities also the strain increases from the Pd to the Ag impurity. A similar trend is
found for the strain field due to 5d impurities Pt and Au. The maximum displacement of 2.3%
of R0

1 is found for the CuAu alloy while the minimum displacement of 0.43% of R0
1 occurt for

the CuNi alloy.
The calculated atomic displacement of the 1NN’s for Pd, Ag, Pt and Au impurities in

Cu show a lattice expansion of 0.0832 a.u., 0.0867 a.u., 0.0953 a.u and 0.11057 a.u. at 1NN’s,
whereas corresponding experimental observations show lattice expansions of 0.0718 § 0.0076 au.,
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FIG. 3. The magnitude of the displacement ju(r)j compared with the experimental value for the Co, Ni,
Pd, Ag, Pt, and Au impurities in Cu.

0.115 § 0.0132 a.u., 0.0737 § 0.00945 a.u. and 0.0907 § 0.0076 a.u., respectively [1]. The
calculated u(r) at 1NN due to a Ni impurity shows a contraction of 0.0208 a.u. at 1NN’s while
the experimental results showed a contraction of 0.0321 § 0.023 at 1NN’s [1]. For the Co
impurity calculated u(r) gives an expansion of 0.0499 a.u. at 1NN’s, whereas the experimental
value at 1NN’s is 0.00567 § 0.034 (i.e. varies from the contraction of 0.028 a.u. to expansion
of 0.0397 a.u..) [1]. Due to large error bars in the experimental values as shown in Fig. 3, the
exact comparison remains inconclusive. The calculated and experimental results however are in
good qualitative agreement.

The calculated atomic displacements up to 2NN’s are used to calculate the impurity induced
relaxation energy Er, which is given as

Er = ¡1
2

X
n®

Fn®un®: (46)

Here ~F is isotropic; the values of FI and FII tabulated in Table II are used in Eq. (46). The
results for Er are also given in Table II. The relaxation energies for Ni, and Pd are smaller than
for other impurities, therefore these impurities may be easily dissolved in Cu. However in the case
of Pt and Au, the relaxation energies are larger than other impurities, and these may not easily be
dissolved in Cu.
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IV. Discussion

We have used here, the Wills and Harrison model potential [7] for the host Cu metal and the
other transition metal impurities. The effect of partially localized d-electrons is included through a
d band width and s-d hybridization. The host potential ÁHH(r) and the change in potential due to
the impurity¢Á(r) are very small and smooth beyond the 2NN distance, therefore the contribution
to Á®¯(q) and F®(q) are expected to be small beyond 2NN’s. In the present calculations, it is
assumed that the impurity is screened by Fermi-Thomas screening, therefore Fridel oscillations
are absent. In the numerical calculations the cubic symmetry of the lattice is retained, although
the exact anisotropy of the Brillouin Zone is not accounted for. This may not introduce serious
errors considering other simplifications in the calculations.

The displacements compared with the XAFS results, shows that the calculated displacements
are in close qualitative agreement with the experimental values, considering the error bars in the
calculations. The d charge of the dilute alloys has been approximated as an effective charge
in our calculations, as it is always difficult to estimate the transfer the d charge in transition
metal based alloys. A more accurate effective d charge value would certainly improve the atomic
displacements. The tabulated displacements values may be quite useful for investigation of the
heat of solution, electric field gradients, asymmetry parameter, wipe out number, Knight shift, and
other properties of the defect lattice, where impurity induced displaced positions of the host atoms
in dilute alloys of Cu are needed. This will help in our basic understanding of alloy formation.
Furthermore this study will explain the strength at a high temperature, the high stiffness, the low
coefficient of thermal expansion, and the chemical compatibility in a variety of environments.
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